Atomic force microscopy (AFM) has emerged as a pivotal technique in biological research, offering unparalleled spatial resolution and force sensitivity to visualise and quantify the nanoscale ...
Atomic force microscopy (AFM) is a method of topographical measurement, wherein a fine probe is raster scanned over a material, and the minute variation in probe height is interpreted by laser ...
What Is Atomic Force Microscopy? Atomic force microscopy (AFM) is a powerful technique that enables surface ultrastructure visualization at molecular resolution. 1 Besides three-dimensional (3D) ...
Atomic force microscopy (AFM) is a standard imaging technique for the structural characterization of surfaces in different fields of materials science, surface science, and biology. Carbon nanotubes ...
Invented 30 years ago, the atomic force microscope has been a major driver of nanotechnology, ranging from atomic-scale imaging to its latest applications in manipulating individual molecules, ...
AFM differs significantly from traditional microscopy techniques as it does not project light or electrons on the sample's surface to create its image. Instead, AFM utilizes a sharp probe while ...
An intelligent AFM processing framework integrates optimized scanning trajectories, distortion correction, and deep learning segmentation to improve imaging stability, accuracy, and automation. By ...
Christoph Gerber, who co-invented the atomic force microscope, tells Matthew Chalmers how the AFM came about 30 years ago and why it continues to shape research at the nanoscale Nano-vision Christoph ...
Overview of the main types of Scannig Probe Microscope types: Scanning tunneling microscope (STM) – using the tunneling current I between the outermost atom of a conducting probe within an atomic ...
Fluorescence force microscopy is a combination of atomic force microscopy and fluorescence microscopy, which allows molecular dynamics to be studied. The technique can be applied to single molecules, ...
Results that may be inaccessible to you are currently showing.
Hide inaccessible results